The Method of Fundamental Solutions with Eigenfunctions Expansion Method for 3D Nonhomogeneous Diffusion Equations

نویسندگان

  • D. L. Young
  • C. H. Chen
  • C. M. Fan
  • L. H. Shen
چکیده

After the successful applications of the combination of the method of fundamental solutions (MFS), the method of particular solutions (MPS), and the eigenfunctions expansion method (EEM) to solve 2D homogeneous and nonhomogeneous diffusion equations by Young et al. (Young et al., Numer Meth Part Differ Equat 22 (2006), 1173), this article intends to extend the same fundamental concepts to calculate more challenging 3D nonhomogeneous diffusion equations. The nonhomogeneous diffusion equations with timeindependent source terms and boundary conditions are analyzed by the proposed meshless MFS-MPS-EEM model. Nonhomogeneous diffusion equation in any complex domains can be decomposed into a Poisson equation and a homogeneous diffusion equation by the principle of linear superposition. This approach is proved to be far better off than solutions by using classic method of separation of variables with inefficient multisummation of very sophisticated series expansion from special functions, which can only limit to treat very simple 3D geometries such as cube, cylinder, or sphere. Poisson equation is solved by using the MPSMFS model, in which the source term in the Poisson equation is first handled by the MPS based on the compactly-supported radial basis functions and the Laplace equation is solved by the MFS. On the other hand, by utilizing the EEM, the homogeneous diffusion equation is first transformed into a Helmholtz equation, which is then solved by the MFS together with the technique of singular value decomposition (SVD) to acquire the eigenvalues and eigenfunctions. After the eigenfunctions are obtained, we can synthesize the diffusion solutions like the orthogonal Fourier series expansions but with only one summation for the series even for multidimensional problems. Numerical results for four case studies of 3D homogeneous and nonhomogeneous diffusion problems show good agreement with the analytical and other numerical solutions, such as finite element method (FEM). Thus, the present numerical scheme has provided a promising meshfree numerical approach to solve 3D nonhomogeneous diffusion equations with time-independent source terms and boundary conditions for very irregular domains. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 25: 195–211, 2009

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Method of Fundamental Solutions with Eigenfunction Expansion Method for Nonhomogeneous Diffusion Equation

In this article we describe a numerical method to solve a nonhomogeneous diffusion equation with arbitrary geometry by combining the method of fundamental solutions (MFS), the method of particular solutions (MPS), and the eigenfunction expansion method (EEM). This forms a meshless numerical scheme of the MFS-MPS-EEM model to solve nonhomogeneous diffusion equations with time-independent source ...

متن کامل

On finite element methods for 3D time–dependent convection–diffusion–reaction equations with small diffusion

The paper studies finite element methods for the simulation of time–dependent convection–diffusion–reaction equations with small diffusion: the SUPG method, a SOLD method and two types of FEM– FCT methods. The methods are assessed, in particular with respect to the size of the spurious oscillations in the computed solutions, at a 3D example with nonhomogeneous Dirichlet boundary conditions and ...

متن کامل

Application of the tan(phi/2)-expansion method for solving some partial differential equations

In this paper, the improved  -expansion method is proposed to solve the Kundu–Eckhaus equation and Gerdjikov–Ivanov model. The applied method are analytical methods to obtaining the exact solutions of nonlinear equations. Here, the aforementioned methods are used for constructing the soliton, periodic, rational, singular and solitary wave solutions for solving some equations. We obtained furthe...

متن کامل

Eigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions

In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....

متن کامل

Application of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation

In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008